On Prüfer non-D-rings
نویسندگان
چکیده
منابع مشابه
Curves and coherent Prüfer rings
Usual definitions of Dedekind domain are not well suited for an algorithmic treatment. Indeed, the notion of Noetherian rings is subtle from a constructive point of view, and to be able to get prime ideals involve strong hypotheses. For instance, if k is a field, even given explicitely, there is in general no method to factorize polynomials in k[X]. The work [2] analyses the notion of Dedekind ...
متن کاملOn quasi-zero divisor graphs of non-commutative rings
Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...
متن کاملOn the Locality of the Prüfer Code
The Prüfer code is a bijection between trees on the vertex set [n] and strings on the set [n] of length n − 2 (Prüfer strings of order n). In this paper we examine the ‘locality’ properties of the Prüfer code, i.e. the effect of changing an element of the Prüfer string on the structure of the corresponding tree. Our measure for the distance between two trees T, T ∗ is ∆(T, T ∗) = n − 1 − |E(T )...
متن کاملPrüfer codes for acyclic hypertrees
We describe a new Prüfer code based on star-reductions which works for infinite acyclic hypertrees.
متن کاملNon-commutative reduction rings
Reduction relations are means to express congruences on rings. In the special case of congruences induced by ideals in commutative polynomial rings, the powerful tool of Gröbner bases can be characterized by properties of reduction relations associated with ideal bases. Hence, reduction rings can be seen as rings with reduction relations associated to subsets of the ring such that every finitel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1994
ISSN: 0022-4049
DOI: 10.1016/0022-4049(94)90103-1